Step 1: Expand $(I+A)^{3$.}
\[
(I + A)^{3} = I^{3} + 3I^{2}A + 3IA^{2} + A^{3}
\]
\[
= I + 3A + 3A^{2} + A^{3}
\]
Step 2: Use the condition $A^{2 = A$.}
Since $A^{2} = A$,
\[
A^{3} = A \cdot A^{2} = A \cdot A = A
\]
So,
\[
(I + A)^{3} = I + 3A + 3A + A = I + 7A
\]
Step 3: Simplify expression.
\[
(I + A)^{3} - 7A = (I + 7A) - 7A = I
\]
Step 4: Conclusion.
The correct answer is (C) $I$.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]