If \(\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k}\) and \(\vec{c}=\hat{i}-2\hat{j}+\hat{k}\),find a unit vector parallel to the vector \(2\vec{a}-\vec{b}+3\vec{c}.\)
We have,
\(\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=2\hat{i}-\hat{j}+3\hat{k}\),and \(\vec{c}=\hat{i}-2\hat{j}+\hat{k}\)
\(2\vec{a}-\vec{b}+3\vec{c}\)\(=2(\hat{i}+\hat{j}+\hat{k})-(2\hat{i}-\hat{j}+3\hat{k})+3\hat{(i}-2\hat{j}+\hat{k})\)
\(=2/hat{i}+2\hat{j}+2\hat{k}-2\hat{i}+\hat{j}-3\hat{k}+3\hat{i}-6\hat{j}+3\hat{k}\)
\(=3\hat{i}-3\hat{j}+2\hat{k}\)
\(|2\vec{a}-\vec{b}+3\vec{c}|=\sqrt{3^{2}+(-3)^{2}+2^{2}}=\sqrt{9+9+4}=\sqrt{22}\)
Hence,the unit vector along \(2\vec{a}-\vec{b}+3\vec{c}\) is
\(\frac{2\vec{a}-\vec{b}+3\vec{c}}{|2\vec{a}-\vec{b}+3\vec{c}|}\)\(=\frac{3i^-3\hat{j}+2\hat{k}}{\sqrt{22}}=\frac{3}{\sqrt{22}}\hat{i}-\frac{3}{\sqrt{22}}\hat{j}+\frac{2}{\sqrt{22}}\hat{k}\).
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |