To find the sums \( A \) and \( B \), we calculate the sum of all coefficients by setting \( x = 1 \) in each expansion.
Step 1. Calculate \( A \)
Substitute \( x = 1 \) in \( (1 - 3x + 10x^2)^n \):\[ A = (1 - 3 \cdot 1 + 10 \cdot 1^2)^n = (1 - 3 + 10)^n = 8^n \]Therefore, \( A = 8^n \).
Step 2. Calculate \( B \)
Substitute \( x = 1 \) in \( (1 + x^2)^n \):\[ B = (1 + 1^2)^n = 2^n \]Thus, \( B = 2^n \).
Step 3. Find the Relationship Between \( A \) and \( B \)
Since \( A = 8^n \) and \( B = 2^n \), we can write:\[ A = (2^n)^3 = B^3 \]Therefore, \( A = B^3 \).
\[ f(x) = \left\{ \begin{array}{ll} 1 - 2x & \text{if } x < -1 \\ \frac{1}{3}(7 + 2|x|) & \text{if } -1 \leq x \leq 2 \\ \frac{11}{18} (x-4)(x-5) & \text{if } x > 2 \end{array} \right. \]
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
Given below are two statements:
Statement (I): An element in the extreme left of the periodic table forms acidic oxides.
Statement (II): Acid is formed during the reaction between water and oxide of a reactive element present in the extreme right of the periodic table.
In the light of the above statements, choose the correct answer from the options given below: