To find the sums \( A \) and \( B \), we calculate the sum of all coefficients by setting \( x = 1 \) in each expansion.
Step 1. Calculate \( A \)
Substitute \( x = 1 \) in \( (1 - 3x + 10x^2)^n \):\[ A = (1 - 3 \cdot 1 + 10 \cdot 1^2)^n = (1 - 3 + 10)^n = 8^n \]Therefore, \( A = 8^n \).
Step 2. Calculate \( B \)
Substitute \( x = 1 \) in \( (1 + x^2)^n \):\[ B = (1 + 1^2)^n = 2^n \]Thus, \( B = 2^n \).
Step 3. Find the Relationship Between \( A \) and \( B \)
Since \( A = 8^n \) and \( B = 2^n \), we can write:\[ A = (2^n)^3 = B^3 \]Therefore, \( A = B^3 \).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: