Question:

If A=[3242]\begin{bmatrix}3&-2\\4&-2\end{bmatrix} and I=[1001]\begin{bmatrix}1&0\\0&1\end{bmatrix},find k so that A2=kA-2I

Updated On: Aug 30, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

A2=A.A

[3242]\begin{bmatrix}3&-2\\4&-2\end{bmatrix}[3242]\begin{bmatrix}3&-2\\4&-2\end{bmatrix} 

=[3(3)+(2)(4)3(2)+(2)(2)4(3)+(2)(4)4(2)+(2)(2)]\begin{bmatrix}3(3)+(-2)(4)&3(-2)+(-2)(-2)\\4(3)+(-2)(4)&4(-2)+(-2)(-2)\end{bmatrix}=[1244]\begin{bmatrix}1&-2\\4&-4\end{bmatrix}

Now A2=kA-2I
[1244]\Rightarrow \begin{bmatrix}1&-2\\4&-4\end{bmatrix}=[3242]\begin{bmatrix}3&-2\\4&-2\end{bmatrix}-2[1001]\begin{bmatrix}1&0\\0&1\end{bmatrix}

\Rightarrow [1244]\begin{bmatrix}1&-2\\4&-4\end{bmatrix}=[3k2k4k2k]\begin{bmatrix}3k&-2k\\4k&-2k\end{bmatrix}-2[1001]\begin{bmatrix}1&0\\0&1\end{bmatrix}

\Rightarrow [1244]\begin{bmatrix}1&-2\\4&-4\end{bmatrix}=[3k22k4k2k2]\begin{bmatrix}3k-2&-2k\\4k-2k&-2\end{bmatrix}
Comparing the corresponding elements, we have:
3k-2=1
3k=2
\Rightarrow k=1

Thus, the value of k is 1. 

Was this answer helpful?
0
0

Top Questions on Matrices

View More Questions