If A=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\) and I=\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\),find k so that A2=kA-2I
A2=A.A
\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)
=\(\begin{bmatrix}3(3)+(-2)(4)&3(-2)+(-2)(-2)\\4(3)+(-2)(4)&4(-2)+(-2)(-2)\end{bmatrix}\)=\(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)
Now A2=kA-2I
\(\Rightarrow \begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k&-2k\\4k&-2k\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k-2&-2k\\4k-2k&-2\end{bmatrix}\)
Comparing the corresponding elements, we have:
3k-2=1
3k=2
\(\Rightarrow\) k=1
Thus, the value of k is 1.
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: