If A=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\) and I=\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\),find k so that A2=kA-2I
A2=A.A
\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)
=\(\begin{bmatrix}3(3)+(-2)(4)&3(-2)+(-2)(-2)\\4(3)+(-2)(4)&4(-2)+(-2)(-2)\end{bmatrix}\)=\(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)
Now A2=kA-2I
\(\Rightarrow \begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k&-2k\\4k&-2k\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k-2&-2k\\4k-2k&-2\end{bmatrix}\)
Comparing the corresponding elements, we have:
3k-2=1
3k=2
\(\Rightarrow\) k=1
Thus, the value of k is 1.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]