If A=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\) and I=\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\),find k so that A2=kA-2I
A2=A.A
\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)
=\(\begin{bmatrix}3(3)+(-2)(4)&3(-2)+(-2)(-2)\\4(3)+(-2)(4)&4(-2)+(-2)(-2)\end{bmatrix}\)=\(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)
Now A2=kA-2I
\(\Rightarrow \begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3&-2\\4&-2\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k&-2k\\4k&-2k\end{bmatrix}\)-2\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(\Rightarrow\) \(\begin{bmatrix}1&-2\\4&-4\end{bmatrix}\)=\(\begin{bmatrix}3k-2&-2k\\4k-2k&-2\end{bmatrix}\)
Comparing the corresponding elements, we have:
3k-2=1
3k=2
\(\Rightarrow\) k=1
Thus, the value of k is 1.

Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)
मोबाइल फोन विहीन दुनिया — 120 शब्दों में रचनात्मक लेख लिखिए :