\(\begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}\)
\(\begin{bmatrix} 3 & 1 & 5 \\ 2 & 9 & 10 \end{bmatrix}\)
To find $(BA)^T$, we compute $BA$ first, then take its transpose.
Multiplying $B$ and $A$ The matrices $B$ and $A$ are:
$B = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$
The product $BA$ is calculated as:
$BA = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$
Perform the multiplication row by row:
1.First row of $B$ with both columns of $A$:
$[-1 \cdot 3 + 0 \cdot (-1), \ -1 \cdot 2 + 0 \cdot 1] = [-3, -2]$
2.Second row of $B$ with both columns of $A$:
$[2 \cdot 3 + 5 \cdot (-1), \ 2 \cdot 2 + 5 \cdot 1] = [6 - 5, 4 + 5] = [1, 9]$
3.Third row of $B$ with both columns of $A$:
$[3 \cdot 3 + 4 \cdot (-1), \ 3 \cdot 2 + 4 \cdot 1] = [9 - 4, 6 + 4] = [5, 10]$
Thus,
$BA = \begin{bmatrix} -3 & -2 \\ 1 & 9 \\ 5 & 10 \end{bmatrix}$
Transposing $BA$ The transpose of $BA$ is obtained by interchanging rows and columns:
$(BA)^T = \begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}$
Final Answer: The matrix $(BA)^T$ is:
$\begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}$
List-I | List-II |
---|---|
(A) Confidence level | (I) Percentage of all possible samples that can be expected to include the true population parameter |
(B) Significance level | (III) The probability of making a wrong decision when the null hypothesis is true |
(C) Confidence interval | (II) Range that could be expected to contain the population parameter of interest |
(D) Standard error | (IV) The standard deviation of the sampling distribution of a statistic |