\(\begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}\)
\(\begin{bmatrix} 3 & 1 & 5 \\ 2 & 9 & 10 \end{bmatrix}\)
To solve for \((BA)^T\), we first need to find the product \(BA\) and then take its transpose. Given:
\(A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}\) and \(B = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}\).
The product \(BA\) is given by:
\(BA = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}\).
Calculating each entry:
Hence,
\(BA = \begin{bmatrix} -3 & -2 \\ 1 & 9 \\ 5 & 10 \end{bmatrix}\).
The transpose of a matrix is obtained by swapping its rows with columns. Thus, the transpose \((BA)^T\) is:
\((BA)^T = \begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}\).
This corresponds to the option:
\(\begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}\)
To find $(BA)^T$, we compute $BA$ first, then take its transpose.
Multiplying $B$ and $A$ The matrices $B$ and $A$ are:
$B = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix}, \quad A = \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$
The product $BA$ is calculated as:
$BA = \begin{bmatrix} -1 & 0 \\ 2 & 5 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & 1 \end{bmatrix}$
Perform the multiplication row by row:
1.First row of $B$ with both columns of $A$:
$[-1 \cdot 3 + 0 \cdot (-1), \ -1 \cdot 2 + 0 \cdot 1] = [-3, -2]$
2.Second row of $B$ with both columns of $A$:
$[2 \cdot 3 + 5 \cdot (-1), \ 2 \cdot 2 + 5 \cdot 1] = [6 - 5, 4 + 5] = [1, 9]$
3.Third row of $B$ with both columns of $A$:
$[3 \cdot 3 + 4 \cdot (-1), \ 3 \cdot 2 + 4 \cdot 1] = [9 - 4, 6 + 4] = [5, 10]$
Thus,
$BA = \begin{bmatrix} -3 & -2 \\ 1 & 9 \\ 5 & 10 \end{bmatrix}$
Transposing $BA$ The transpose of $BA$ is obtained by interchanging rows and columns:
$(BA)^T = \begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}$
Final Answer: The matrix $(BA)^T$ is:
$\begin{bmatrix} -3 & 1 & 5 \\ -2 & 9 & 10 \end{bmatrix}$
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Identify the part of the sentence that contains a grammatical error:
Each of the boys have submitted their assignment on time.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world