Question:

If $A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}$ and $A^8 = aA +bI,$ then $(a , b) = $

Updated On: May 12, 2024
  • $(8, 7)$
  • $(-7, 8)$
  • $(8, -7)$
  • $(-8, -7)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We have, $A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}$
$A^2 = A . A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix} \begin{bmatrix}1&0\\ 1&1\end{bmatrix} = \begin{bmatrix}1&0\\2&1\end{bmatrix}$
$A^3 = A^2 . A = \begin{bmatrix}1&0\\2&1\end{bmatrix} \begin{bmatrix}1&0\\ 1&1\end{bmatrix} = \begin{bmatrix}1&0\\ 3&1\end{bmatrix}$
Similarly , $ A^8 = \begin{bmatrix}1&0\\8 &1\end{bmatrix}$
Now, $ A^8 = aA + bI$
$ \Rightarrow \:\:\: \begin{bmatrix}1&0\\ 8 &1\end{bmatrix} = a \begin{bmatrix}1&0\\ 1&1\end{bmatrix} + b \begin{bmatrix}1 &0\\ 0 & 1\end{bmatrix}$
$ \Rightarrow \:\:\: \begin{bmatrix}1&0\\ 8&1\end{bmatrix} = \begin{bmatrix} a+ b &0\\ a & a+b \end{bmatrix}$
$ \therefore \:\:\:\: a = 8 $ and $a + b = 1 \:\: \Rightarrow \: b = 1 - 8 = - 7$
Was this answer helpful?
7
0

Concepts Used:

Matrices

Matrix:

A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.

The basic operations that can be performed on matrices are:

  1. Addition of Matrices - The addition of matrices addition can only be possible if the number of rows and columns of both the matrices are the same.
  2. Subtraction of Matrices - Matrices subtraction is also possible only if the number of rows and columns of both the matrices are the same.
  3. Scalar Multiplication - The product of a matrix A with any number 'c' is obtained by multiplying every entry of the matrix A by c, is called scalar multiplication. 
  4. Multiplication of Matrices - Matrices multiplication is defined only if the number of columns in the first matrix and rows in the second matrix are equal. 
  5. Transpose of Matrices - Interchanging of rows and columns is known as the transpose of matrices.