If \( A = \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix} \) and \( 5A^{-1} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \), then \( A^2 - 4A \) is:
Step 1: We are given that
\[ 5A^{-1} = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix} \]To find \( A^{-1} \), divide the matrix by 5:
\[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \]Step 2: Now, multiply \( A \) by \( A^{-1} \) to obtain the identity matrix \( I \):
\[ A \cdot A^{-1} = I \]Step 3: Next, compute \( A^2 - 4A \). The result of this calculation is:
\[ A^2 - 4A = 5I \]Therefore, the correct answer is \( 5I \).
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is:
Given the function:
\[ f(x) = \frac{2x - 3}{3x - 2} \]
and if \( f_n(x) = (f \circ f \circ \ldots \circ f)(x) \) is applied \( n \) times, find \( f_{32}(x) \).
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).
If the real-valued function
\[ f(x) = \sin^{-1}(x^2 - 1) - 3\log_3(3^x - 2) \]is not defined for all \( x \in (-\infty, a] \cup (b, \infty) \), then what is \( 3^a + b^2 \)?