If \( A = \begin{pmatrix} x & y & y \\ y & x & y \\ y & y & x \end{pmatrix} \) and \( 5A^{-1} = \begin{pmatrix} -3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3 \end{pmatrix} \), then \( A^2 - 4A \) is:
Step 1: We are given that
\[ 5A^{-1} = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix} \]To find \( A^{-1} \), divide the matrix by 5:
\[ A^{-1} = \begin{pmatrix} -\frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{3}{5} \end{pmatrix} \]Step 2: Now, multiply \( A \) by \( A^{-1} \) to obtain the identity matrix \( I \):
\[ A \cdot A^{-1} = I \]Step 3: Next, compute \( A^2 - 4A \). The result of this calculation is:
\[ A^2 - 4A = 5I \]Therefore, the correct answer is \( 5I \).
Match the following: