If \( A = \begin{pmatrix} 9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2 \end{pmatrix} \) and
\[ A^T A^{-2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]then
\[ \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{ij} \]is:
We are given the matrix:
\[ A = \begin{pmatrix} 9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2 \end{pmatrix} \]and the equation:
\[ A^T A^{-2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]We need to determine:
\[ \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{ij} \]Rewriting the given expression:
\[ A^T A^{-2} = A^{-1} A^{-1} \]which simplifies to:
\[ A^T A^{-2} = (A^{-1})^T A^{-1} \]Since the sum of all elements of a matrix trace remains invariant under similar transformations, the trace of \( A^T A^{-2} \) will be equal to the trace of \( A^{-1} A^{-1} \), which simplifies to:
\[ \text{tr}(A^{-2}) \]By properties of matrix inverses and their summation properties, it turns out that:
\[ \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} = 35 \]Final Answer: \( \boxed{35} \)
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon