If \( A = \begin{pmatrix} 9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2 \end{pmatrix} \) and
\[ A^T A^{-2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]then
\[ \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{ij} \]is:
We are given the matrix:
\[ A = \begin{pmatrix} 9 & 3 & 0 \\ 1 & 5 & 8 \\ 7 & 6 & 2 \end{pmatrix} \]and the equation:
\[ A^T A^{-2} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \]We need to determine:
\[ \sum_{1 \leq i \leq 3} \sum_{1 \leq j \leq 3} a_{ij} \]Rewriting the given expression:
\[ A^T A^{-2} = A^{-1} A^{-1} \]which simplifies to:
\[ A^T A^{-2} = (A^{-1})^T A^{-1} \]Since the sum of all elements of a matrix trace remains invariant under similar transformations, the trace of \( A^T A^{-2} \) will be equal to the trace of \( A^{-1} A^{-1} \), which simplifies to:
\[ \text{tr}(A^{-2}) \]By properties of matrix inverses and their summation properties, it turns out that:
\[ \sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} = 35 \]Final Answer: \( \boxed{35} \)
Match the following: