Step 1: Begin by calculating \( A^2 \). Multiply the matrix \( A \) by itself:
\[
A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.
\]
Perform the matrix multiplication \( A \times A \):
\[
A^2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}.
\]
Step 2: Carry out the multiplication:
\[
A^2 = \begin{pmatrix}
(0)(0) + (0)(0) + (-1)(-1) & (0)(0) + (0)(-1) + (-1)(0) & (0)(-1) + (0)(0) + (-1)(0) \\
(0)(0) + (-1)(0) + (0)(-1) & (0)(0) + (-1)(-1) + (0)(0) & (0)(-1) + (-1)(0) + (0)(0) \\
(-1)(0) + (0)(0) + (0)(-1) & (-1)(0) + (0)(-1) + (0)(0) & (-1)(-1) + (0)(0) + (0)(0)
\end{pmatrix}
\]
Simplifying:
\[
A^2 = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
Step 3: Now, compute \( I + A^2 \), where \( I \) is the identity matrix:
\[
I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
Thus:
\[
I + A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
\]
This is equal to \( 2I \).