We are given:
\[
A = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 8 & 0\\ 7 & 1 \end{bmatrix}
\]
and
\[
A^3 = B
\]
First, compute \( A^2 \):
\[
A^2 = A \cdot A = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}
= \begin{bmatrix} x^2 & 0 \\ x + 1 & 1 \end{bmatrix}
\]
Next, compute \( A^3 = A . A^2 \):
\[
A^3 = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x^2 & 0 \\ x+1 & 1 \end{bmatrix}
= \begin{bmatrix}
x \cdot x^2 + 0 \cdot (x+1) & x \cdot 0 + 0 \cdot 1 \\
1 \cdot x^2 + 1 \cdot (x+1) & 1 \cdot 0 + 1 \cdot 1
\end{bmatrix}
= \begin{bmatrix}
x^3 & 0\\
x^2 + x + 1 & 1
\end{bmatrix}
\]
Now, equate \( A^3 \) with \( B \):
\[
\begin{bmatrix} x^3 & 0 \\ x^2 + x + 1 & 1 \end{bmatrix}
=
\begin{bmatrix} 8 & 0 \\ 7 & 1 \end{bmatrix}
\]
From the first row, first column:
\[
x^3 = 8 \Rightarrow x = 2
\]
Also verify the second row, first column:
\[
x^2 + x + 1 = 4 + 2 + 1 = 7
\]
So, \( x = 2 \) satisfies both.