\( 5^8 \)
\( 3^8 \)
The determinant of A is:
$|A| = \begin{vmatrix} K & 4 \\ 4 & K \end{vmatrix} = K \cdot K - 4 \cdot 4 = K^2 - 16.$
Using the property of determinants:
$|A|^3 = (|A|)^3 = 729.$
Take the cube root:
$|A| = \sqrt[3]{729} = 9.$
Thus:
$K^2 - 16 = 9 \implies K^2 = 25.$
Therefore:
$K = \pm 5.$
The value of $K^8$ is:
$K^8 = (K^2)^4 = 25^4.$
Calculate:
$25^4 = (25^2)^2 = 625^2 = 390625.$
Final Answer:
$5^8$
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |