If \( A = \begin{bmatrix} k & 2 \\ 2 & k \end{bmatrix} \) and \( |A^3| = 125 \), then the value of \( k \) is:
Step 1: Calculate the determinant of \( A \)
The determinant of a 2x2 matrix \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is given by:
\[
|A| = ad - bc
\]
For the matrix \( A = \begin{bmatrix} k & 2 \\ 2 & k \end{bmatrix} \), we can calculate the determinant \( |A| \):
\[
|A| = k \times k - 2 \times 2 = k^2 - 4
\]
Step 2: Use the property of determinants
The property of determinants states that for any square matrix \( A \), the determinant of \( A^n \) is equal to \( |A|^n \). So:
\[
|A^3| = |A|^3
\]
Given that \( |A^3| = 125 \), we can substitute and solve for \( |A| \):
\[
|A|^3 = 125
\]
Taking the cube root of both sides:
\[
|A| = \sqrt[3]{125} = 5
\]
Step 3: Solve for \( k \)
From the previous step, we have \( |A| = 5 \). So:
\[
k^2 - 4 = 5
\]
Solving for \( k \):
\[
k^2 = 9 \quad \Rightarrow \quad k = 3 \text{ or } k = -3
\]
Conclusion:
The value of \( k \) is either \( 3 \) or \( -3 \).