We are given the matrices \( A \), \( B \), and \( C \), and we need to calculate the expression \( A^2 + B^2 + C^2 \).
Step 1: Calculate \( A^2 \), \( B^2 \), and \( C^2 \).
For matrix \( A \):
\[
A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, \quad A^2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \times \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I
\]
For matrix \( B \):
\[
B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B^2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I
\]
For matrix \( C \):
\[
C = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}, \quad C^2 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \times \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I
\]
Step 2: Add \( A^2 \), \( B^2 \), and \( C^2 \).
\[
A^2 + B^2 + C^2 = -I + (-I) + (-I) = -3I
\]
Thus, the expression \( A^2 + B^2 + C^2 \) equals \( -3I \), which is option (3), as \( I \) represents the identity matrix.