Step 1: Write $A'$, the transpose of $A$. \[ A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \] Step 2: Multiply $A'A$. \[ A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \] \[ = \begin{bmatrix} \cos^2\alpha + \sin^2\alpha & \cos\alpha\sin\alpha - \sin\alpha\cos\alpha \\ \sin\alpha\cos\alpha - \cos\alpha\sin\alpha & \sin^2\alpha + \cos^2\alpha \end{bmatrix} \] \[ = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I. \]
Final Answer: \[ \boxed{A'A = I} \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]