Question:

If $A = \begin{bmatrix} \alpha^2 & 5 \\ 5 & -\alpha \end{bmatrix}$ and $\det(A^{10}) = 1024$, then $\alpha =$ ?

Show Hint

Use the identity $\det(A^n) = (\det A)^n$ for square matrices.
Updated On: May 18, 2025
  • $-2$
  • $-1$
  • $-3$
  • $0$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let us first find $\det(A)$: \[ \det(A) = (\alpha^2)(-\alpha) - (5)(5) = -\alpha^3 - 25 \] Given $\det(A^{10}) = 1024$, then: \[ \det(A)^{10} = 1024 \Rightarrow \det(A) = \sqrt[10]{1024} = 2 \] So, \[ -\alpha^3 - 25 = 2 \Rightarrow -\alpha^3 = 27 \Rightarrow \alpha = -3 \]
Was this answer helpful?
0
0