Question:

If $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, then show that $A^2 - 4A + 7I = 0$.

Show Hint

When working with matrix equations, perform matrix multiplications carefully and ensure that each term is calculated and simplified correctly.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are given the matrix $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$, and we need to show that: \[ A^2 - 4A + 7I = 0 \] First, calculate $A^2$: \[ A^2 = A \times A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \] Performing matrix multiplication: \[ A^2 = \begin{bmatrix} 2 \times 2 + 3 \times (-1) & 2 \times 3 + 3 \times 2 \\ -1 \times 2 + 2 \times (-1) & -1 \times 3 + 2 \times 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} \] Now calculate $4A$: \[ 4A = 4 \times \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} \] Next, calculate $7I$ where $I$ is the identity matrix: \[ 7I = 7 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \] Now, compute $A^2 - 4A + 7I$: \[ A^2 - 4A + 7I = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ -4 & 8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \] Simplifying: \[ A^2 - 4A + 7I = \begin{bmatrix} 1 - 8 + 7 & 12 - 12 + 0 \\ -4 + 4 + 0 & 1 - 8 + 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \] Thus, $A^2 - 4A + 7I = 0$ as required.
Was this answer helpful?
2
0

Questions Asked in CBSE CLASS XII exam

View More Questions