Question:

If \[ A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \] then find \((AB)^{-1}\).

Show Hint

For matrices, \((AB)^{-1} = B^{-1}A^{-1}\), but direct multiplication is often faster in MCQs.
Updated On: Feb 2, 2026
  • \( \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix} \)
  • \( \begin{bmatrix} 2 & -3 \\ 7 & 11 \end{bmatrix} \)
  • \( \begin{bmatrix} 2 & -3 \\ -7 & -11 \end{bmatrix} \)
  • \( \begin{bmatrix} -2 & -3 \\ -7 & 11 \end{bmatrix} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Find the product \(AB\).
\[ AB = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 3 \\ 7 & 2 \end{bmatrix} \]
Step 2: Find the determinant of \(AB\).
\[ |AB| = (11)(2) - (3)(7) = 22 - 21 = 1 \]
Step 3: Find the inverse of \(AB\).
\[ (AB)^{-1} = \begin{bmatrix} 2 & -3 \\ -7 & 11 \end{bmatrix} \]
Was this answer helpful?
0
0