Step 1: Use the inverse property.
For matrices, \[ (B^{-1}A^{-1})^{-1} = A B \]
Step 2: Multiply matrices \( A \) and \( B \).
\[ AB = \begin{bmatrix}2&3\\1&2\end{bmatrix} \begin{bmatrix}2&-3\\-1&2\end{bmatrix} \] \[ = \begin{bmatrix} 4-3 & -6+6 \\ 2-2 & -3+4 \end{bmatrix} = \begin{bmatrix}1&0\\0&1\end{bmatrix} \]
Step 3: Conclusion.
\[ \boxed{\begin{bmatrix}1&0\\0&1\end{bmatrix}} \]
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
and $B=\operatorname{adj}(\operatorname{adj}A)$, if $|B|=81$, find the value of $\alpha^2$ (where $\alpha\in\mathbb{R}$).
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 