Step 1: First, compute the determinant of the matrix \( A \):
\[
\text{det}(A) = 1 \cdot \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} = 1 \cdot (-\cos^2 \alpha - \sin^2 \alpha).
\]
Using the identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \), we get:
\[
\text{det}(A) = -1.
\]
Step 2: Find the adjugate matrix \( \text{adj}(A) \), which is the transpose of the cofactor matrix:
\[
\text{adj}(A) = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -\cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{bmatrix}.
\]
Step 3: Compute the inverse using the formula:
\[
A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A).
\]
Since \( \text{det}(A) = -1 \), we obtain:
\[
A^{-1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{bmatrix}.
\]
Thus, the adjugate and inverse of \( A \) are:
\[
\text{adj}(A) = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -\cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{bmatrix},
\]
\[
A^{-1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{bmatrix}.
\]