Step 1: Write the given matrices.
\[ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]
Step 2: Compute $BA$. \\ \[ BA = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \] Performing multiplication: \[ BA = \begin{bmatrix} (1 \cdot 0 + 0 \cdot 1) & (1 \cdot 1 + 0 \cdot 0) \\ (0 \cdot 0 + (-1) \cdot 1) & (0 \cdot 1 + (-1) \cdot 0) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \]
Step 3: Compare with given options.
This matches option (B).
Step 4: Conclusion.
The correct answer is (B) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]