Question:

If \( A + B + C = \frac{\pi}{4} \), then evaluate the expression:
\[ \sin 4A + \sin 4B + \sin 4C \]

Show Hint

When dealing with multiple-angle identities, break down expressions using known trigonometric transformations.
Updated On: Jun 4, 2025
  • \( 4\cos 2A \cos 2B \cos 2C \)
  • \( 4\sin 2A \sin 2B \sin 2C \)
  • \( 1 + 4\sin 2A \sin 2B \sin 2C \)
  • \( 1 + 4\cos 2A \cos 2B \cos 2C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Using the identity for the sum of sines, we express:
\[ \sin 4A + \sin 4B + \sin 4C \]
in a form that incorporates cosine terms. Given \( A + B + C = \frac{\pi}{4} \), we apply trigonometric transformations:
\[ \sin x + \sin y + \sin z = 1 + 4\cos 2A \cos 2B \cos 2C. \]
Thus, the expression simplifies to:
\[ \boxed{1 + 4\cos 2A \cos 2B \cos 2C}. \]
Was this answer helpful?
0
0

AP EAPCET Notification