Using the identity for the sum of sines, we express:
\[
\sin 4A + \sin 4B + \sin 4C
\]
in a form that incorporates cosine terms. Given \( A + B + C = \frac{\pi}{4} \), we apply trigonometric transformations:
\[
\sin x + \sin y + \sin z = 1 + 4\cos 2A \cos 2B \cos 2C.
\]
Thus, the expression simplifies to:
\[
\boxed{1 + 4\cos 2A \cos 2B \cos 2C}.
\]