We are given \(A + B + C = \dfrac{\pi}{4}\). Multiply both sides by 4 to get:
\[
4A + 4B + 4C = \pi.
\]
Using the identity for sum of sines:
\[
\sin 4A + \sin 4B = 2 \sin(2A + 2B) \cos(2A - 2B),
\]
and noting that \(2A + 2B = 2(\dfrac{\pi}{4} - C) = \dfrac{\pi}{2} - 2C\), so:
\[
\sin 4A + \sin 4B = 2 \cos 2C \cos(2A - 2B).
\]
Now,
\[
\sin 4A + \sin 4B + \sin 4C = 2 \cos 2C \cos(2A - 2B) + \sin 4C.
\]
But also,
\[
\sin 4C = \sin(\pi - 4A - 4B) = \sin(4A + 4B),
\]
which can be expanded as:
\[
\sin(4A + 4B) = 2 \sin(2A + 2B) \cos(2A + 2B) = 2 \cos 2C \cos(2A + 2B).
\]
Putting it all together gives:
\[
\sin 4A + \sin 4B + \sin 4C = 4 \cos 2A \cos 2B \cos 2C.
\]