We use integration formula:
\[
\begin{align}
\int \frac{ax + b}{cx + d} dx = \frac{a}{c} x + \frac{bc - ad}{c^2} \log |cx + d| + K
\]
Now if \( \int \frac{at + b}{ct + d} dt = t \), that means:
\[
\begin{align}
\frac{a}{c} t + \frac{bc - ad}{c^2} \log |ct + d| = t
\Rightarrow \text{Must have } \frac{a}{c} = 1 \text{ and } \frac{bc - ad}{c^2} = 0
\Rightarrow a = c,\quad bc = ad
\]
We use same formula backward and derive:
\[
\begin{align}
\int \frac{ax + b}{cx + d} dx = -\frac{d}{c}x + \frac{bc - ad}{c^2} \log |cx - a| + K
\]
As per given constraints, it simplifies as shown in option (1).