Given:
\( A, B, C \) are the angles of a triangle, so
\[
A + B + C = 180^\circ.
\]
Find the value of:
\[
\sin 2A - \sin 2B + \sin 2C.
\]
Solution:
Using the identity for difference of sines,
\[
\sin P - \sin Q = 2 \cos \frac{P+Q}{2} \sin \frac{P-Q}{2},
\]
let's rewrite the expression as:
\[
(\sin 2A - \sin 2B) + \sin 2C = 2 \cos (A + B) \sin (A - B) + \sin 2C.
\]
Since \( A + B + C = 180^\circ \), we have
\[
A + B = 180^\circ - C,
\]
and thus
\[
\cos (A + B) = \cos (180^\circ - C) = -\cos C.
\]
Substituting back:
\[
\sin 2A - \sin 2B + \sin 2C = 2(-\cos C) \sin (A - B) + \sin 2C = -2 \cos C \sin (A - B) + \sin 2C.
\]
Using the identity for \( \sin 2C = 2 \sin C \cos C \), the expression becomes:
\[
-2 \cos C \sin (A - B) + 2 \sin C \cos C = 2 \cos C (\sin C - \sin (A - B)).
\]
Next, use the sine difference identity:
\[
\sin C - \sin (A - B) = 2 \cos \frac{C + A - B}{2} \sin \frac{C - A + B}{2}.
\]
Since \( A + B + C = 180^\circ \), it can be shown that
\[
\frac{C + A - B}{2} = 90^\circ - B, \quad \frac{C - A + B}{2} = 90^\circ - A.
\]
Hence,
\[
\sin C - \sin (A - B) = 2 \cos (90^\circ - B) \sin (90^\circ - A) = 2 \sin B \cos A.
\]
Putting it all together:
\[
\sin 2A - \sin 2B + \sin 2C = 2 \cos C \times 2 \sin B \cos A = 4 \cos A \sin B \cos C.
\]
Final answer:
\[
\boxed{4 \cos A \sin B \cos C}.
\]