Question:

If A,B,C A, B, C are the angles of a triangle, then sin2Asin2B+sin2C= \sin 2A - \sin 2B + \sin 2C =

Show Hint

When working with trigonometric identities, consider using sum-to-product identities to simplify expressions involving sines and cosines. Remember the angle sum identities for triangles.
Updated On: Mar 24, 2025
  • 4cosAcosBsinC 4 \cos A \cos B \sin C
  • 4cosAsinBcosC 4 \cos A \sin B \cos C
  • 4cosAsinBcosC1 4 \cos A \sin B \cos C - 1
  • 4sinAcosBsinC 4 \sin A \cos B \sin C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given that A,B,C A, B, C are the angles of a triangle, which means: A+B+C=180. A + B + C = 180^\circ. We are tasked with simplifying the expression: sin2Asin2B+sin2C. \sin 2A - \sin 2B + \sin 2C. Step 1: Using the sum-to-product identities We will use the sum-to-product identities to simplify the expression. Recall the identity for the sine of a sum: sinXsinY=2cos(X+Y2)sin(XY2). \sin X - \sin Y = 2 \cos\left(\frac{X + Y}{2}\right) \sin\left(\frac{X - Y}{2}\right). Step 2: Applying the identity to the given expression We apply the identity to sin2Asin2B \sin 2A - \sin 2B : sin2Asin2B=2cos(2A+2B2)sin(2A2B2). \sin 2A - \sin 2B = 2 \cos\left(\frac{2A + 2B}{2}\right) \sin\left(\frac{2A - 2B}{2}\right). This simplifies to: sin2Asin2B=2cos(A+B)sin(AB). \sin 2A - \sin 2B = 2 \cos(A + B) \sin(A - B). Since A+B+C=180 A + B + C = 180^\circ , we have A+B=180C A + B = 180^\circ - C , so cos(A+B)=cosC \cos(A + B) = \cos C . Thus: sin2Asin2B=2cosCsin(AB). \sin 2A - \sin 2B = 2 \cos C \sin(A - B). Now, add sin2C \sin 2C to both sides: sin2Asin2B+sin2C=2cosCsin(AB)+sin2C. \sin 2A - \sin 2B + \sin 2C = 2 \cos C \sin(A - B) + \sin 2C. This expression simplifies to: 4cosAsinBcosC. 4 \cos A \sin B \cos C. Thus, the correct answer is 4cosAsinBcosC 4 \cos A \sin B \cos C .
Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions