If \( A \) and \( B \) are skew-symmetric, then:
\[
A^T = -A, \quad B^T = -B.
\]
For the sum \( AB + BA \), we calculate the transpose:
\[
(AB + BA)^T = B^T A^T + A^T B^T = (-B)(-A) + (-A)(-B) = AB + BA.
\]
Since the transpose equals the matrix itself, \( AB + BA \) is symmetric. Final Answer: \( \boxed{ {Symmetric}} \)