Step 1: Recall definition.
For any non-singular matrix $M$,
\[
M \cdot M^{-1} = I
\]
Step 2: Take $M = AB$.
\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}
\]
\[
= AIA^{-1}
\]
\[
= AA^{-1} = I
\]
Step 3: Conclude.
Since $(AB)(B^{-1}A^{-1}) = I$, it follows that
\[
(AB)^{-1} = B^{-1}A^{-1}
\]
Final Answer: \[ \boxed{(AB)^{-1} = B^{-1}A^{-1}} \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]