Step 1: Recall definition.
For any non-singular matrix $M$,
\[
M \cdot M^{-1} = I
\]
Step 2: Take $M = AB$.
\[
(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}
\]
\[
= AIA^{-1}
\]
\[
= AA^{-1} = I
\]
Step 3: Conclude.
Since $(AB)(B^{-1}A^{-1}) = I$, it follows that
\[
(AB)^{-1} = B^{-1}A^{-1}
\]
Final Answer: \[ \boxed{(AB)^{-1} = B^{-1}A^{-1}} \]
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 