\(\vec{b}=λ\vec{a}\),for some scalar \(λ\)
\(\vec{a}=±\vec{b}\)
the respective components of \(\vec{a}\) and \(\vec{b}\) are proportional
both the vectors \(\vec{a}\) and \(\vec{b}\) have same direction,but different magnitudes
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |
A certain reaction is 50 complete in 20 minutes at 300 K and the same reaction is 50 complete in 5 minutes at 350 K. Calculate the activation energy if it is a first order reaction. Given: \[ R = 8.314 \, \text{J K}^{-1} \, \text{mol}^{-1}, \quad \log 4 = 0.602 \]
When a vector is multiplied by a scalar quantity, the magnitude of the vector changes in proportion to the scalar magnitude, but the direction of the vector remains the same.
In contrast, the scalar has only magnitude, and the vectors have both magnitude and direction. To determine the magnitude of a vector, we must first find the length of the vector. The magnitude of a vector formula denoted as 'v', is used to compute the length of a given vector ‘v’. So, in essence, this variable is the distance between the vector's initial point and to the endpoint.