The equation is:
\[
y^2 + y + 1 = 0 \Rightarrow y = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{3}i}{2}
\]
Let \( a = \omega \), \( b = \omega^2 \), where \( \omega \) is a cube root of unity:
\[
\omega^3 = 1,\quad 1 + \omega + \omega^2 = 0
\]
Now compute:
\[
a^4 = \omega^4 = \omega, \quad b^4 = \omega^8 = \omega^2, \quad a^{-1}b^{-1} = (\omega \cdot \omega^2)^{-1} = (\omega^3)^{-1} = 1^{-1} = 1
\]
\[
a^4 + b^4 + a^{-1}b^{-1} = \omega + \omega^2 + 1 = 0
\]