It is given that \(A\) and \(B\) are symmetric matrices. Therefore, we have: \(A'=A\, and\, B'=B ....(1)\) Now \((AB-BA)'=(AB)'-(BA)'\,\, [(A-B)'=A'-B']\) \(=B'A'-A'B'\) \(=BA-AB [using(1)]\) \(=-(AB-BA)\) therefore \((AB-BA)'=-(AB-BA)\) Thus, \((AB − BA)\) is a skew-symmetric matrix.