We are given two equations:
1) \( 3\cos^2 A + 2\cos^2 B = 4 \)
2) \( \frac{3\sin A}{\sin B} = \frac{2\cos B}{\cos A} \)
From the second equation, cross-multiply: \[ 3\sin A \cos A = 2\sin B \cos B \] Using the double angle identity \( \sin(2\theta) = 2\sin\theta\cos\theta \), we get: \[ \frac{3}{2}(2\sin A \cos A) = (2\sin B \cos B) \] \[ \frac{3}{2}\sin(2A) = \sin(2B) \] \[ 3\sin(2A) = 2\sin(2B) \quad \text{(Equation X)} \]
Using the identity \( \cos^2\theta = \frac{1+\cos(2\theta)}{2} \), we substitute into the first equation: \[ 3\left(\frac{1+\cos(2A)}{2}\right) + 2\left(\frac{1+\cos(2B)}{2}\right) = 4 \] Multiply by 2: \[ 3(1+\cos(2A)) + 2(1+\cos(2B)) = 8 \] \[ 3 + 3\cos(2A) + 2 + 2\cos(2B) = 8 \] \[ 5 + 3\cos(2A) + 2\cos(2B) = 8 \] \[ 3\cos(2A) + 2\cos(2B) = 3 \quad \text{(Equation Y)} \]
From Equation X: \[ \sin(2B) = \frac{3}{2}\sin(2A) \] From Equation Y: \[ 2\cos(2B) = 3 - 3\cos(2A) \implies \cos(2B) = \frac{3 - 3\cos(2A)}{2} \]
Substitute into the identity: \[ \left(\frac{3}{2}\sin(2A)\right)^2 + \left(\frac{3 - 3\cos(2A)}{2}\right)^2 = 1 \] Multiply by 4: \[ 9\sin^2(2A) + 9(1 - 2\cos(2A) + \cos^2(2A)) = 4 \] \[ 9(\sin^2(2A) + \cos^2(2A)) + 9 - 18\cos(2A) = 4 \] \[ 9(1) + 9 - 18\cos(2A) = 4 \] \[ 18 - 18\cos(2A) = 4 \] \[ 18\cos(2A) = 14 \implies \cos(2A) = \frac{7}{9} \]
Substitute \( \cos(2A) = \frac{7}{9} \) into the expression for \( \cos(2B) \): \[ \cos(2B) = \frac{3 - 3\left(\frac{7}{9}\right)}{2} = \frac{3 - \frac{7}{3}}{2} = \frac{\frac{9-7}{3}}{2} = \frac{2/3}{2} = \frac{1}{3} \]
We need to test if \( A + 2B = 90^\circ \). If \( A + 2B = 90^\circ \), then \( A = 90^\circ - 2B \). Substituting this into the second equation: \[ \frac{3\sin(90^\circ - 2B)}{\sin B} = \frac{2\cos B}{\cos(90^\circ - 2B)} \] \[ \frac{3\cos(2B)}{\sin B} = \frac{2\cos B}{\sin(2B)} \] Cross-multiply: \[ 3\cos(2B)\sin(2B) = 2\sin B \cos B \] Using the identity \( 2\sin\theta\cos\theta = \sin(2\theta) \), we get: \[ 3\cos(2B)\sin(2B) = \sin(2B) \] Dividing by \( \sin(2B) \): \[ 3\cos(2B) = 1 \] \[ \cos(2B) = \frac{1}{3} \] This matches the value we derived for \( \cos(2B) \). Since \( A \) and \( B \) are acute angles, this confirms \( A + 2B = 90^\circ \). Therefore, \( A + 2B = 90^\circ \) is true.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.