Given \(A= \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\)
A2=A.A =\(\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\)\(\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\)
= \(\begin{bmatrix} 3(3)+1(-1) & 3(1)+1(2) \\ -1(3)+2(-1) & -1(1)+2(2) \end{bmatrix}\)
= \(\begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix}\)= \(\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}\)
\(\therefore\) LHS=A2-5A+7I
⇒ \(\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}\)\(-5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\)\(+7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
⇒ \(\begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix}\)\(+\begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}\)
⇒ \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)
= 0 =R.H.S
\(\therefore A^2-5A+7I=O\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)