5
Given:
\(A = \begin{bmatrix} 2a & -3b \\ 3 & 2 \end{bmatrix}\)
We need to find \(\text{adj}A\):
\(\text{adj}A = \begin{bmatrix} 2 & 3b \\ -3 & 2a \end{bmatrix}\)
Now, we compute \(A \cdot \text{adj}A\):
\(A \cdot \text{adj}A = \begin{bmatrix} 2a & -3b \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3b \\ -3 & 2a \end{bmatrix}\)
\(= \begin{bmatrix} (2a \cdot 2) + (-3b \cdot -3) & (2a \cdot 3b) + (-3b \cdot 2a) \\ (3 \cdot 2) + (2 \cdot -3) & (3 \cdot 3b) + (2 \cdot 2a) \end{bmatrix}\)
\(= \begin{bmatrix} 4a + 9b & 0 \\ 0 & 9b + 4a \end{bmatrix}\)
We also compute \(A \cdot A^T\):
\(A^T = \begin{bmatrix} 2a & 3 \\ -3b & 2 \end{bmatrix}\)
\(A \cdot A^T = \begin{bmatrix} 2a & -3b \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2a & 3 \\ -3b & 2 \end{bmatrix}\)
\(= \begin{bmatrix} (2a \cdot 2a) + (-3b \cdot -3b) & (2a \cdot 3) + (-3b \cdot 2) \\ (3 \cdot 2a) + (2 \cdot -3b) & (3 \cdot 3) + (2 \cdot 2) \end{bmatrix}\)
\(= \begin{bmatrix} 4a^2 + 9b^2 & 6a - 6b \\ 6a - 6b & 9 + 4 \end{bmatrix}\)
\(= \begin{bmatrix} 4a^2 + 9b^2 & 6a - 6b \\ 6a - 6b & 13 \end{bmatrix}\)
Given that \(\text{adj}A = A \cdot A^T\), we equate:
\(\begin{bmatrix} 4a + 9b & 0 \\ 0 & 4a + 9b \end{bmatrix} = \begin{bmatrix} 4a^2 + 9b^2 \\ 6a - 6b \end{bmatrix}\)
From this, we get the following system of equations:
1. \(4a + 9b = 4a^2 + 9b^2\)
2. \(6a - 6b = 0\) (from the off-diagonal elements)
From equation 2:
\(6a - 6b = 0 \implies a = b\)
Substitute a = b into equation 1:
\(4a + 9a = 4a^2 + 9a^2\)
\(13a = 13a^2\)
\(a^2 = a\)
\(a(a - 1) = 0\)
So, \(a = 0\) or \(a = 1\). Since \(a = b\), we have:
\(a = b = 1\)
\(2a + 3b = 2(1) + 3(1) = 2 + 3 = 5\)
So, the answer is 5.
The numbers or functions that are kept in a matrix are termed the elements or the entries of the matrix.
The matrix acquired by interchanging the rows and columns of the parent matrix is termed the Transpose matrix. The definition of a transpose matrix goes as follows - “A Matrix which is devised by turning all the rows of a given matrix into columns and vice-versa.”