Given the equation:
\[
a^2 x^4 + b^2 y^4 = c^6,
\]
find the maximum value of \( xy \).
Step 1: Let \( u = x^2 \) and \( v = y^2 \), so the equation becomes:
\[
a^2 u^2 + b^2 v^2 = c^6
\]
We want to maximize:
\[
xy = \sqrt{uv}
\]
Step 2: Use Lagrange multipliers to maximize \( f(u,v) = \sqrt{uv} \) subject to constraint:
\[
g(u,v) = a^2 u^2 + b^2 v^2 - c^6 = 0
\]
Step 3: Define Lagrangian:
\[
\mathcal{L} = \sqrt{uv} - \lambda (a^2 u^2 + b^2 v^2 - c^6)
\]
Step 4: Calculate partial derivatives and set to zero:
\[
\frac{\partial \mathcal{L}}{\partial u} = \frac{1}{2} \frac{v^{1/2}}{u^{1/2}} - \lambda 2 a^2 u = 0
\]
\[
\frac{\partial \mathcal{L}}{\partial v} = \frac{1}{2} \frac{u^{1/2}}{v^{1/2}} - \lambda 2 b^2 v = 0
\]
Step 5: From the first equation:
\[
\frac{v^{1/2}}{2 u^{1/2}} = 2 \lambda a^2 u \implies \frac{v^{1/2}}{u^{1/2}} = 4 \lambda a^2 u
\]
From the second equation:
\[
\frac{u^{1/2}}{2 v^{1/2}} = 2 \lambda b^2 v \implies \frac{u^{1/2}}{v^{1/2}} = 4 \lambda b^2 v
\]
Step 6: Multiply these two equations:
\[
\left( \frac{v^{1/2}}{u^{1/2}} \right) \times \left( \frac{u^{1/2}}{v^{1/2}} \right) = (4 \lambda a^2 u)(4 \lambda b^2 v)
\]
\[
1 = 16 \lambda^2 a^2 b^2 u v
\]
\[
\lambda^2 = \frac{1}{16 a^2 b^2 u v}
\]
Step 7: Divide the first equation by the second:
\[
\frac{\frac{v^{1/2}}{u^{1/2}}}{\frac{u^{1/2}}{v^{1/2}}} = \frac{4 \lambda a^2 u}{4 \lambda b^2 v} \implies \frac{v}{u} = \frac{a^2 u}{b^2 v} \implies b^2 v^2 = a^2 u^2
\]
\[
\Rightarrow v = \frac{a}{b} u
\]
Step 8: Substitute \( v = \frac{a}{b} u \) into the constraint:
\[
a^2 u^2 + b^2 \left( \frac{a}{b} u \right)^2 = c^6
\]
\[
a^2 u^2 + a^2 u^2 = c^6
\]
\[
2 a^2 u^2 = c^6 \implies u^2 = \frac{c^6}{2 a^2} \implies u = \frac{c^3}{a \sqrt{2}}
\]
Step 9: Find \( v \):
\[
v = \frac{a}{b} u = \frac{a}{b} \times \frac{c^3}{a \sqrt{2}} = \frac{c^3}{b \sqrt{2}}
\]
Step 10: Finally, the maximum value of \( xy = \sqrt{uv} \):
\[
xy = \sqrt{uv} = \sqrt{ \frac{c^3}{a \sqrt{2}} \times \frac{c^3}{b \sqrt{2}} } = \sqrt{ \frac{c^6}{ab \times 2} } = \frac{c^3}{\sqrt{2ab}}
\]
Therefore,
\[
\boxed{\frac{c^3}{\sqrt{2ab}}}
\]