Question:

If \[ a^2 x^4 + b^2 y^4 = c^6, \] then the maximum value of \( xy \) is:

Show Hint

To find maximum values in constrained equations, use AM-GM or Lagrange multipliers.
Updated On: Mar 24, 2025
  • \( \frac{c^3}{2ab} \)
  • \( \frac{c^3}{\sqrt{2ab}} \)
  • \( \frac{c^3}{ab} \)
  • \( \frac{c^3}{\sqrt{ab}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Using AM-GM inequality For maximum \( xy \), apply the method of Lagrange multipliers or use the AM-GM inequality: \[ a^2 x^4 + b^2 y^4 \geq 2 \sqrt{a^2 x^4 b^2 y^4}. \] Substituting: \[ c^6 \geq 2 \sqrt{a^2 x^4 b^2 y^4}. \] Solving for \( xy \): \[ xy \leq \frac{c^3}{\sqrt{2ab}}. \]
Was this answer helpful?
0
0