$PA + PB = \text{constant}$ implies $P$ traces an ellipse with foci at $A$ and $B$.
Distance between foci:
\[
AB = \sqrt{(2 - 2)^2 + (3 + 3)^2} = 6 \Rightarrow 2c = 6 \Rightarrow c = 3
\]
Given: $PA + PB = 8 = 2a \Rightarrow a = 4$
Using: $a^2 = b^2 + c^2 \Rightarrow 16 = b^2 + 9 \Rightarrow b^2 = 7$
Center = midpoint of A and B = $(2, 0)$, vertical major axis.
Ellipse equation:
\[
\frac{(y - 0)^2}{16} + \frac{(x - 2)^2}{7} = 1 \Rightarrow 7y^2 + 16(x^2 - 4x + 4) = 112
\Rightarrow 16x^2 + 7y^2 - 64x - 48 = 0
\]