Step 1: Understand the problem
Given two fixed points \( A(2,3) \) and \( B(2,-3) \), we need to find the equation of the locus of point \( P(x,y) \) such that the sum of distances from \( P \) to \( A \) and \( B \) is constant:
\[
PA + PB = 8
\]
This defines an ellipse with foci at \( A \) and \( B \).
Step 2: Write the distance expressions
\[
PA = \sqrt{(x - 2)^2 + (y - 3)^2}, \quad PB = \sqrt{(x - 2)^2 + (y + 3)^2}
\]
Step 3: Use the ellipse property
The sum of distances to foci is constant:
\[
\sqrt{(x - 2)^2 + (y - 3)^2} + \sqrt{(x - 2)^2 + (y + 3)^2} = 8
\]
Step 4: Simplify by substitution
Let \( u = x - 2 \), so:
\[
\sqrt{u^2 + (y - 3)^2} + \sqrt{u^2 + (y + 3)^2} = 8
\]
Step 5: Square both sides
Set \( S_1 = \sqrt{u^2 + (y - 3)^2} \), \( S_2 = \sqrt{u^2 + (y + 3)^2} \).
\[
S_1 + S_2 = 8 \implies (S_1 + S_2)^2 = 64
\]
\[
S_1^2 + 2 S_1 S_2 + S_2^2 = 64
\]
Step 6: Substitute \( S_1^2 \) and \( S_2^2 \)
\[
[u^2 + (y - 3)^2] + 2 S_1 S_2 + [u^2 + (y + 3)^2] = 64
\]
\[
2 u^2 + (y - 3)^2 + (y + 3)^2 + 2 S_1 S_2 = 64
\]
Expand squares:
\[
(y - 3)^2 = y^2 - 6y + 9, \quad (y + 3)^2 = y^2 + 6y + 9
\]
Sum:
\[
(y - 3)^2 + (y + 3)^2 = 2 y^2 + 18
\]
Step 7: Update equation
\[
2 u^2 + 2 y^2 + 18 + 2 S_1 S_2 = 64 \implies 2 S_1 S_2 = 64 - 18 - 2 u^2 - 2 y^2 = 46 - 2 u^2 - 2 y^2
\]
\[
S_1 S_2 = 23 - u^2 - y^2
\]
Step 8: Express \( S_1 S_2 \) explicitly
\[
S_1 S_2 = \sqrt{u^2 + (y - 3)^2} \times \sqrt{u^2 + (y + 3)^2} = \sqrt{[u^2 + (y - 3)^2][u^2 + (y + 3)^2]}
\]
Calculate inside:
\[
[u^2 + (y - 3)^2][u^2 + (y + 3)^2] = (u^2 + y^2 - 6y + 9)(u^2 + y^2 + 6y + 9)
\]
Use \((a - b)(a + b) = a^2 - b^2\) with \(a = u^2 + y^2 + 9\) and \(b = 6y\):
\[
= (u^2 + y^2 + 9)^2 - (6 y)^2 = (u^2 + y^2 + 9)^2 - 36 y^2
\]
Step 9: Square both sides of \( S_1 S_2 = 23 - u^2 - y^2 \)
\[
(S_1 S_2)^2 = (23 - u^2 - y^2)^2
\]
So,
\[
(u^2 + y^2 + 9)^2 - 36 y^2 = (23 - u^2 - y^2)^2
\]
Step 10: Substitute back \( u = x - 2 \)
Rewrite:
\[
\big[(x - 2)^2 + y^2 + 9\big]^2 - 36 y^2 = \big[23 - (x - 2)^2 - y^2 \big]^2
\]
Step 11: Expand and simplify
Expanding and simplifying leads to the ellipse equation:
\[
16 x^2 + 7 y^2 - 64 x - 48 = 0
\]
Final answer: The equation of the locus is
\[
16 x^2 + 7 y^2 - 64 x - 48 = 0
\]