To determine the de-Broglie wavelength \(\lambda\) of the electron in the second orbit of the hydrogen atom, we start by analyzing the quantization conditions for electrons in Bohr's model and the de-Broglie wavelength relation.
The de-Broglie wavelength is given by:
\(\lambda = \frac{h}{mv}\)
where:
For an electron in the nth orbit of a hydrogen atom, the quantized angular momentum condition is:
\(mvr = \frac{nh}{2\pi}\)
Solving for \(v\), we get:
\(v = \frac{nh}{2\pi mr}\)
Substituting in the expression for the radius of the \(n\)th orbit:
\(r = n^2a_0\)
where \(a_0\) is the Bohr radius, and substituting this into the expression for \(v\):
\(v = \frac{nh}{2\pi mn^2a_0}\)
Plug this velocity \(v\) back into the de-Broglie wavelength equation:
\(\lambda = \frac{h}{m\left(\frac{nh}{2\pi mn^2a_0}\right)}\)
which simplifies to:
\(\lambda = \frac{2\pi n^2a_0}{nh}\)
The terms simplify further to:
\(\lambda = \frac{2\pi n a_0}{h}\)
In the second orbit, where \(n = 2\), we substitute \(n = 2\):
\(\lambda = \frac{4\pi a_0}{h}\)
This matches with the option:
\(\frac{4\pi a_0}{n}\)
Given below are two statements:
Statement (I) : The dimensions of Planck’s constant and angular momentum are same.
Statement (II) : In Bohr’s model, electron revolves around the nucleus in those orbits for which angular momentum is an integral multiple of Planck’s constant.
In the light of the above statements, choose the most appropriate answer from the options given below:
A hydrogen atom consists of an electron revolving in a circular orbit of radius r with certain velocity v around a proton located at the nucleus of the atom. The electrostatic force of attraction between the revolving electron and the proton provides the requisite centripetal force to keep it in the orbit. According to Bohr’s model, an electron can revolve only in certain stable orbits. The angular momentum of the electron in these orbits is some integral multiple of \(\frac{h}{2π}\), where h is the Planck’s constant.
Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: