This is an infinite series with a common ratio of \( \frac{1}{7} \). We can write the series as: \[ 7 = 5 + \frac{1}{7} (5 + \alpha) + \frac{1}{7^2} (5 + 2\alpha) + \cdots. \] This is a geometric series. By setting up the sum of the series and solving for \( \alpha \), we find its value.
Final Answer: \( \alpha = \frac{6}{7} \).
\[ 5m \sum_{r=m}^{2m} T_r \text{ is equal to:} \]
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.