We are given the equation:
\[ 5 - \log_{10} \sqrt{1+x} + 4 \log_{10} \sqrt{1-x} = \log_{10} \frac{1}{\sqrt{1-x^2}} \]
Expressing the right-hand side in a different form: \[ 5 - \log_{10} \sqrt{1+x} + 4 \log_{10} \sqrt{1-x} = \log_{10} \left( \sqrt{1+x} \times \sqrt{1-x} \right)^{-1} \]
Applying the logarithmic property \( \log_b(a^n) = n \log_b a \), we get: \[ 5 - \log_{10} \sqrt{1+x} + 4 \log_{10} \sqrt{1-x} = (-1) \log_{10} \left( \sqrt{1+x} \right) + (-1) \log_{10} \left( \sqrt{1-x} \right) \]
This simplifies to: \[ 5 = -\log_{10} \sqrt{1+x} + \log_{10} \sqrt{1+x} - \log_{10} \sqrt{1-x} - 4 \log_{10} \sqrt{1-x} \]
The equation simplifies to: \[ 5 = -5 \log_{10} \sqrt{1-x} \]
Solving for \( \sqrt{1-x} \): \[ \sqrt{1-x} = \frac{1}{10} \] Squaring both sides: \[ (\sqrt{1-x})^2 = \frac{1}{100} \] Thus: \[ 1 - x = \frac{1}{100} \] So: \[ x = 1 - \frac{1}{100} = \frac{99}{100} \]
The value of \( 100x \) is: \[ 100x = 100 \times \frac{99}{100} = 99 \]
The correct answer is \( \boxed{99} \).
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?