If $5^\circ \leq x^\circ \leq 15^\circ$, then the value of $\sin 30^\circ + \cos x^\circ - \sin x^\circ$ will be:
Show Hint
When solving trigonometric range problems, test the extreme values of $x$ within the interval to capture the possible range of the expression. Numerical approximation often quickly confirms the correct option.
Step 1: Simplify the given expression.
\[
E = \sin 30^\circ + \cos x - \sin x
\]
Since $\sin 30^\circ = \tfrac{1}{2}$,
\[
E = \tfrac{1}{2} + \cos x - \sin x
\]
Step 2: Consider the range of $x$.
$5^\circ \leq x \leq 15^\circ$.
So $\cos x$ is close to 1, while $\sin x$ is small (between $\sin 5^\circ \approx 0.087$ and $\sin 15^\circ \approx 0.259$).
Step 3: Estimate bounds.
- At $x=5^\circ$:
\[
E = 0.5 + \cos 5^\circ - \sin 5^\circ \approx 0.5 + 0.9962 - 0.0872 = 1.409
\]
- At $x=15^\circ$:
\[
E = 0.5 + \cos 15^\circ - \sin 15^\circ \approx 0.5 + 0.9659 - 0.2588 = 1.207
\]
So the value of $E$ lies in the interval:
\[
1.207 \leq E \leq 1.409
\]
Step 4: Compare with given options.
- (A) $[-1,-0.5]$: Not valid.
- (B) $[-0.5,0]$: Not valid.
- (C) $(0,0.5)$: Not valid.
- (D) $[0.5,1]$: Not valid (our values are above 1).
- (E) None of the above: Correct.
Final Answer:
\[
\boxed{\text{E. None of the above}}
\]