Use identity:
\[
\sin^2 x = 1 - \cos^2 x
\]
Substitute in equation:
\[
3(1 - \cos^2 x) + 10 \cos x - 6 = 0 \Rightarrow 3 - 3 \cos^2 x + 10 \cos x - 6 = 0
-3 \cos^2 x + 10 \cos x - 3 = 0 \Rightarrow 3 \cos^2 x - 10 \cos x + 3 = 0
\]
Solve quadratic:
\[
\cos x = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6}
\Rightarrow \cos x = 3 \text{ (reject)},\ \cos x = \frac{1}{3}
\]
Now find:
\[
\sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}
\]
Then:
\[
\sec x = \frac{1}{\cos x} = 3,\quad \csc x = \frac{1}{\sin x} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4},\quad \cot x = \frac{\cos x}{\sin x} = \frac{1/3}{2\sqrt{2}/3} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}
\]
Add:
\[
\sec x + \csc x + \cot x = 3 + \frac{3\sqrt{2}}{4} + \frac{\sqrt{2}}{4} = 3 + \frac{4\sqrt{2}}{4} = 3 + \sqrt{2}
\]