We are given the equation \( 3 \sin^2 x + 10 \cos x - 6 = 0 \). First, we solve for \( \sin x \) and \( \cos x \).
Rearrange the given equation:
\[
3 \sin^2 x = 6 - 10 \cos x
\]
\[
\sin^2 x = \frac{6 - 10 \cos x}{3}
\]
Now, we know that \( \sin^2 x + \cos^2 x = 1 \), so we substitute \( \sin^2 x \) from the above equation:
\[
\frac{6 - 10 \cos x}{3} + \cos^2 x = 1
\]
Multiply through by 3 to eliminate the denominator:
\[
6 - 10 \cos x + 3 \cos^2 x = 3
\]
\[
3 \cos^2 x - 10 \cos x + 3 = 0
\]
This is a quadratic equation in \( \cos x \). Use the quadratic formula to solve for \( \cos x \):
\[
\cos x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(3)(3)}}{2(3)}
\]
\[
\cos x = \frac{10 \pm \sqrt{100 - 36}}{6}
\]
\[
\cos x = \frac{10 \pm \sqrt{64}}{6}
\]
\[
\cos x = \frac{10 \pm 8}{6}
\]
This gives two possible solutions:
\[
\cos x = \frac{18}{6} = 3 \quad \text{or} \quad \cos x = \frac{2}{6} = \frac{1}{3}
\]
Since \( \cos x = 3 \) is not a valid solution (as \( \cos x \) cannot be greater than 1), we have:
\[
\cos x = \frac{1}{3}
\]
Now, use the Pythagorean identity to find \( \sin x \):
\[
\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}
\]
\[
\sin x = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}
\]
Now that we have \( \sin x = \frac{2\sqrt{2}}{3} \) and \( \cos x = \frac{1}{3} \), we can find \( \sec x \), \( \csc x \), and \( \cot x \):
\[
\sec x = \frac{1}{\cos x} = \frac{1}{\frac{1}{3}} = 3
\]
\[
\csc x = \frac{1}{\sin x} = \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{3}{2\sqrt{2}} = \frac{3\sqrt{2}}{4}
\]
\[
\cot x = \frac{\cos x}{\sin x} = \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = \frac{1}{2\sqrt{2}}
\]
Now, sum \( \sec x + \csc x + \cot x \):
\[
\sec x + \csc x + \cot x = 3 + \frac{3\sqrt{2}}{4} + \frac{1}{2\sqrt{2}}
\]
Simplify:
\[
= 3 + \frac{3\sqrt{2}}{4} + \frac{1}{2\sqrt{2}} = 3 + \sqrt{2} = 3 + \sqrt{2}
\]
Thus, the correct answer is \( 3 + \sqrt{2} \).