Step 1: Use trigonometric identities.
We know
\[
\sin^2 x=\frac{1-\cos 2x}{2}
\]
Substitute into the given equation:
\[
\frac{1-\cos 2x}{2}-\cos 2x=2-\sin 2x
\]
Step 2: Simplify the equation.
\[
\frac{1-3\cos 2x}{2}=2-\sin 2x
\]
Multiply both sides by 2:
\[
1-3\cos 2x=4-2\sin 2x
\]
Step 3: Rearrange terms.
\[
3\cos 2x-2\sin 2x= -3
\]
or
\[
2\sin 2x-3\cos 2x=3
\]
Step 4: Write in standard form.
\[
\sqrt{(2)^2+(3)^2}\sin(2x-\alpha)=3
\]
where
\[
\sin\alpha=\frac{3}{\sqrt{13}},\quad \cos\alpha=\frac{2}{\sqrt{13}}
\]
Hence,
\[
\sqrt{13}\sin(2x-\alpha)=3
\Rightarrow \sin(2x-\alpha)=\frac{3}{\sqrt{13}}
\]
Step 5: Solve for \(x\).
This gives
\[
2x-\alpha=\frac{\pi}{2}+2n\pi
\Rightarrow x=n\pi+\frac{\pi}{2}
\]
Step 6: Check the given condition.
The condition \(3\cos x\ne2\sin x\) removes extraneous solutions, leaving
\[
x=n\pi+\frac{\pi}{2}
\]