Step 1: Express \(\sin^2 x\) in terms of \(\cos x\).
We know that
\[
\sin^2 x = 1 - \cos^2 x
\]
Step 2: Substitute in the given equation.
\[
2(1-\cos^2 x) + 7\cos x = 5
\]
\[
2 - 2\cos^2 x + 7\cos x - 5 = 0
\]
\[
-2\cos^2 x + 7\cos x - 3 = 0
\]
Step 3: Simplify the quadratic equation.
\[
2\cos^2 x - 7\cos x + 3 = 0
\]
Step 4: Solve for \(\cos x\).
\[
(2\cos x - 1)(\cos x - 3) = 0
\]
\[
\cos x = \frac{1}{2} \quad \text{or} \quad \cos x = 3
\]
Step 5: Choose the permissible value.
Since \(-1 \le \cos x \le 1\),
\[
\cos x = \frac{1}{2}
\]