Let vertex $V = (2,3)$ and focus $S = (3,2)$.
The axis of the parabola is the line joining $V$ and $S$. Slope:
\[
m = \frac{2 - 3}{3 - 2} = -1 \Rightarrow x + y = 5
\]
Let $Z$ be point on axis such that $V$ is midpoint of $SZ$ (point on directrix). Solve:
\[
\frac{3 + x_Z}{2} = 2 \Rightarrow x_Z = 1,
\quad \frac{2 + y_Z}{2} = 3 \Rightarrow y_Z = 4
\]
So directrix passes through $Z = (1,4)$, perpendicular to axis with slope $1$: $x - y + 3 = 0$
Now use parabola definition:
\[
\sqrt{(x - 3)^2 + (y - 2)^2} = \frac{|x - y + 3|}{\sqrt{2}}
\]
Squaring:
\[
(x - 3)^2 + (y - 2)^2 = \frac{(x - y + 3)^2}{2}
\]
\[
2(x^2 - 6x + 9 + y^2 - 4y + 4) = x^2 - 2xy + y^2 + 6x - 6y + 9
\]
Simplifying:
\[
x^2 + y^2 + 2xy - 18x - 2y + 17 = 0
\]