Given 4 + 5 \(\tan θ\) = \(\sec θ\).
Squaring both sides to eliminate \(\sec θ\), we get:
\(24 \tan^2 θ + 40 \tan θ + 15 = 0\)
Solving this quadratic equation, we find:
\(\tan θ = \frac{-10 \pm \sqrt{10}}{12}\)
Since \(-\frac{\pi}{2} < α < \frac{\pi}{2}\), we reject \(\tan α = \frac{-10 + \sqrt{10}}{12}\) and select:
\(\tan α = \frac{\sqrt{10} - 10}{12}\)
So, the correct answer is: \(\frac{\sqrt{10} - 10}{12}\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: