Step 1: Express all bases using prime factors.
Rewrite each base in terms of primes 2, 3 and 5:
\[
12 = 2^2 \cdot 3,\quad
4 = 2^2,\quad
5 = 5,\quad
8 = 2^3,\quad
20 = 2^2 \cdot 5,\quad
243 = 3^5.
\]
Substitute into the given equation:
\[
(2^2 \cdot 3)^{12x} \times (2^2)^{24x+12} \times 5^{2y}
= (2^3)^{4z} \times (2^2 \cdot 5)^{12x} \times (3^5)^{3x-6}.
\]
Step 2: Simplify the exponents.
Left-hand side (LHS):
\[
(2^2 \cdot 3)^{12x} = 2^{24x} \cdot 3^{12x},
\]
\[
(2^2)^{24x+12} = 2^{48x+24}.
\]
So LHS becomes:
\[
2^{24x} \cdot 3^{12x} \cdot 2^{48x+24} \cdot 5^{2y}
= 2^{(24x + 48x + 24)} \cdot 3^{12x} \cdot 5^{2y}
= 2^{72x + 24} \cdot 3^{12x} \cdot 5^{2y}.
\]
Right-hand side (RHS):
\[
(2^3)^{4z} = 2^{12z},
\]
\[
(2^2 \cdot 5)^{12x} = 2^{24x} \cdot 5^{12x},
\]
\[
(3^5)^{3x-6} = 3^{5(3x-6)} = 3^{15x - 30}.
\]
So RHS becomes:
\[
2^{12z} \cdot 2^{24x} \cdot 5^{12x} \cdot 3^{15x - 30}
= 2^{12z + 24x} \cdot 3^{15x - 30} \cdot 5^{12x}.
\]
Step 3: Equate exponents of corresponding primes.
Since the expressions are equal and factorized into primes, equate exponents of 2, 3 and 5.
\underline{For base 3:}
\[
12x = 15x - 30 \Rightarrow 30 = 3x \Rightarrow x = 10.
\]
\underline{For base 5:}
\[
2y = 12x.
\]
Substitute \(x = 10\):
\[
2y = 12 \cdot 10 = 120 \Rightarrow y = 60.
\]
\underline{For base 2:}
\[
72x + 24 = 12z + 24x.
\]
Substitute \(x = 10\):
\[
72 \cdot 10 + 24 = 12z + 24 \cdot 10
\Rightarrow 720 + 24 = 12z + 240
\Rightarrow 744 = 12z + 240
\Rightarrow 12z = 504
\Rightarrow z = 42.
\]
Step 4: Compute \(x + y + z\).
\[
x + y + z = 10 + 60 + 42 = 112.
\]
Thus, \(x + y + z = \boxed{112}\).