To solve the equation $12^{12x} \times 4^{24x+12} \times 5^{2y} = 8^{4z} \times 20^{12x} \times 243^{3x-6}$, we begin by expressing each term as a power of its prime factors.
12 = $2^2 \times 3$, so $12^{12x} = 2^{24x} \times 3^{12x}$.
4 = $2^2$, so $4^{24x+12} = 2^{48x+24}$.
5 is prime, so $5^{2y} = 5^{2y}$.
8 = $2^3$, so $8^{4z} = 2^{12z}$.
20 = $2^2 \times 5$, so $20^{12x} = 2^{24x} \times 5^{12x}$.
243 = $3^5$, so $243^{3x-6} = 3^{15x-30}$.
Substituting, the equation becomes:
$2^{24x} \times 3^{12x} \times 2^{48x+24} \times 5^{2y} = 2^{12z} \times 2^{24x} \times 5^{12x} \times 3^{15x-30}$.
Simplify by combining powers:
$2^{24x + 48x + 24} \times 3^{12x} \times 5^{2y} = 2^{12z + 24x} \times 5^{12x} \times 3^{15x-30}$.
Equating the exponents of the same bases, we have:
| 1. For base $2$: $72x + 24 = 12z + 24x$ |
| 2. For base $3$: $12x = 15x - 30$ |
| 3. For base $5$: $2y = 12x$ |
Solving these, we start with the second equation:
$12x = 15x - 30 \Rightarrow 3x = 30 \Rightarrow x = 10$.
Now solving the first equation:
$72x + 24 = 12z + 24x$
Substituting $x = 10$:
$720 + 24 = 12z + 240 \Rightarrow 744 = 12z + 240 \Rightarrow 12z = 504 \Rightarrow z = 42$.
Finally, solving for $y$ using the third equation:
$2y = 12x \Rightarrow 2y = 120 \Rightarrow y = 60$.
Therefore, $x + y + z = 10 + 60 + 42 = 112$.
This value of 112 fits the provided range of 112, confirming our solution is correct. Thus, the final answer is $x + y + z = 112$.
To solve the given equation:
$12^{12x} \times 4^{24x+12} \times 5^{2y} = 8^{4z} \times 20^{12x} \times 243^{3x-6}$,
we first express all terms with a common base where possible.
Base representations:
$12=2^2 \cdot 3$, $4=2^2$, $5=5$, $8=2^3$, $20=2^2 \cdot 5$, $243=3^5$
Now, rewrite each power with these bases:
$12^{12x}=(2^2 \cdot 3)^{12x}=2^{24x} \cdot 3^{12x}$
$4^{24x+12}=(2^2)^{24x+12}=2^{48x+24}$
$5^{2y}=5^{2y}$
$8^{4z}=(2^3)^{4z}=2^{12z}$
$20^{12x}=(2^2 \cdot 5)^{12x}=2^{24x} \cdot 5^{12x}$
$243^{3x-6}=(3^5)^{3x-6}=3^{15x-30}$
Equating powers of the same base on both sides:
Combining $2$'s exponents from LHS: $2^{(24x+48x+24)}=2^{72x+24}$
From RHS: $2^{12z+24x}$
Equating: $72x+24=12z+24x \implies 48x+24=12z \implies 4x+2=z$ (1)
Combining $3$'s exponents from LHS: $3^{12x}$
From RHS: $3^{15x-30}$
Equating: $12x=15x-30 \implies 3x=30 \implies x=10$ (2)
Combining $5$'s exponents from LHS: $5^{2y}$
From RHS: $5^{12x}$
Equating: $2y=12x \implies y=6x$ (3)
Substituting $x=10$ in (1) and (3):
$z=4(10)+2=42$
$y=6(10)=60$
Thus, $x+y+z=10+60+42=112$.
Since the solution, 112, is within the specified range (112,112), it matches the expected outcome.
Therefore, $x+y+z=112$.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: