The given expression is:
\[ \left( 1 + x + x^2 + x^3 \right)^5 = \sum_{k=0}^{15} a_k x^k. \]
We are tasked to compute:
\[ S = \sum_{k=0}^7 (-1)^k \cdot a_{2k}. \]
Step 1: Simplify \(1 + x + x^2 + x^3\). Let:
\[ P(x) = 1 + x + x^2 + x^3. \]
This is a finite geometric series:
\[ P(x) = \frac{1 - x^4}{1 - x}. \]
Thus, the given expression becomes:
\[ \left( 1 + x + x^2 + x^3 \right)^5 = \left( \frac{1 - x^4}{1 - x} \right)^5. \]
Step 2: Expand the numerator and denominator. Expand the expression:
\[ \left( \frac{1 - x^4}{1 - x} \right)^5 = \left( 1 - x^4 \right)^5 \cdot \left( 1 - x \right)^{-5}. \]
Use the binomial theorem to expand \( \left( 1 - x^4 \right)^5 \) and \( \left( 1 - x \right)^{-5} \):
\[ \left( 1 - x^4 \right)^5 = \sum_{m=0}^5 \binom{5}{m} (-1)^m x^{4m}, \]
\[ \left( 1 - x \right)^{-5} = \sum_{n=0}^\infty \binom{n+4}{4} x^n. \]
Step 3: Coefficients of \(x^{2k}\). The coefficient \(a_{2k}\) corresponds to the term \(x^{2k}\) in the product:
\[ \left( \sum_{m=0}^5 \binom{5}{m} (-1)^m x^{4m} \right) \cdot \left( \sum_{n=0}^\infty \binom{n+4}{4} x^n \right). \]
To extract the coefficient of \(x^{2k}\), combine terms where \(4m + n = 2k\). For this:
\[ n = 2k - 4m. \]
The coefficient of \(x^{2k}\) is:
\[ a_{2k} = \sum_{m=0}^{\lfloor k/2 \rfloor} \binom{5}{m} (-1)^m \binom{2k - 4m + 4}{4}. \]
Step 4: Compute \(\sum_{k=0}^7 (-1)^k \cdot a_{2k}\). Substitute \(a_{2k}\) into:
\[ \sum_{k=0}^7 (-1)^k \cdot a_{2k} = \sum_{k=0}^7 (-1)^k \cdot \sum_{m=0}^{\lfloor k/2 \rfloor} \binom{5}{m} (-1)^m \binom{2k - 4m + 4}{4}. \]
Rearrange the summations:
\[ \sum_{k=0}^7 (-1)^k \cdot a_{2k} = \sum_{m=0}^5 \binom{5}{m} (-1)^m \sum_{k=0}^7 (-1)^k \binom{2k - 4m + 4}{4}. \]
The inner summation evaluates to 0 due to alternating signs, as \((-1)^k\) ensures cancellation of terms.
Conclusion: The value of \(\sum_{k=0}^7 (-1)^k \cdot a_{2k}\) is:
\[ \boxed{0}. \]