Question:

If \((1 + x + x^2 + x^3)^5 = \sum_{k=0}^{15} a_k x^k\), then \(\sum_{k=0}^{7} (-1)^k \cdot a_{2k}\) is equal to:

Show Hint

Use the multinomial expansion to determine the number of distinct terms in an expansion. The number of distinct powers of the variable gives the number of terms.
Updated On: Jan 10, 2025
  • \(2^5\)
  • \(4^5\)
  • \(0\)
  • \(4^4\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The given expression is:

\[ \left( 1 + x + x^2 + x^3 \right)^5 = \sum_{k=0}^{15} a_k x^k. \]

We are tasked to compute:

\[ S = \sum_{k=0}^7 (-1)^k \cdot a_{2k}. \]

Step 1: Simplify \(1 + x + x^2 + x^3\). Let:

\[ P(x) = 1 + x + x^2 + x^3. \]

This is a finite geometric series:

\[ P(x) = \frac{1 - x^4}{1 - x}. \]

Thus, the given expression becomes:

\[ \left( 1 + x + x^2 + x^3 \right)^5 = \left( \frac{1 - x^4}{1 - x} \right)^5. \]

Step 2: Expand the numerator and denominator. Expand the expression:

\[ \left( \frac{1 - x^4}{1 - x} \right)^5 = \left( 1 - x^4 \right)^5 \cdot \left( 1 - x \right)^{-5}. \]

Use the binomial theorem to expand \( \left( 1 - x^4 \right)^5 \) and \( \left( 1 - x \right)^{-5} \):

\[ \left( 1 - x^4 \right)^5 = \sum_{m=0}^5 \binom{5}{m} (-1)^m x^{4m}, \]

\[ \left( 1 - x \right)^{-5} = \sum_{n=0}^\infty \binom{n+4}{4} x^n. \]

Step 3: Coefficients of \(x^{2k}\). The coefficient \(a_{2k}\) corresponds to the term \(x^{2k}\) in the product:

\[ \left( \sum_{m=0}^5 \binom{5}{m} (-1)^m x^{4m} \right) \cdot \left( \sum_{n=0}^\infty \binom{n+4}{4} x^n \right). \]

To extract the coefficient of \(x^{2k}\), combine terms where \(4m + n = 2k\). For this:

\[ n = 2k - 4m. \]

The coefficient of \(x^{2k}\) is:

\[ a_{2k} = \sum_{m=0}^{\lfloor k/2 \rfloor} \binom{5}{m} (-1)^m \binom{2k - 4m + 4}{4}. \]

Step 4: Compute \(\sum_{k=0}^7 (-1)^k \cdot a_{2k}\). Substitute \(a_{2k}\) into:

\[ \sum_{k=0}^7 (-1)^k \cdot a_{2k} = \sum_{k=0}^7 (-1)^k \cdot \sum_{m=0}^{\lfloor k/2 \rfloor} \binom{5}{m} (-1)^m \binom{2k - 4m + 4}{4}. \]

Rearrange the summations:

\[ \sum_{k=0}^7 (-1)^k \cdot a_{2k} = \sum_{m=0}^5 \binom{5}{m} (-1)^m \sum_{k=0}^7 (-1)^k \binom{2k - 4m + 4}{4}. \]

The inner summation evaluates to 0 due to alternating signs, as \((-1)^k\) ensures cancellation of terms.

Conclusion: The value of \(\sum_{k=0}^7 (-1)^k \cdot a_{2k}\) is:

\[ \boxed{0}. \]

Was this answer helpful?
0
0