Step 1: Evaluating the Given Limit
The given function is:
\[
f(x) = \frac{2\cos x - 1}{2\cos x - 1}.
\]
For all values of \( x \) where \( 2\cos x - 1 \neq 0 \), we get:
\[
\lim\limits_{x \to a} f(x) = 1.
\]
Step 2: Identifying the Undefined Points
The denominator becomes zero when:
\[
2\cos a - 1 = 0.
\]
\[
\cos a = \frac{1}{2}.
\]
\[
a = \frac{\pi}{3}.
\]
At \( a = \frac{\pi}{3} \), the function is undefined.
Step 3: Determining Where the Limit Exists
For \( 0 \leq a<\frac{\pi}{3} \), the denominator does not become zero, and we have:
\[
\lim\limits_{x \to a} f(x) = 1.
\]
For \( a = \frac{\pi}{3} \), the denominator is zero, leading to an undefined expression.
For \( a>\frac{\pi}{3} \), the expression changes sign, yielding:
\[
\lim\limits_{x \to a} f(x) = -1.
\]
Step 4: Conclusion
Thus, the final answer is:
\[
\boxed{1, \text{ when } 0 \leq a<\frac{\pi}{3}.}
\]
\bigskip