(1) Hydration Reaction:
\(CH_3 - CH = CH_2 + H^+ \rightarrow CH_3 - \overset{+}{C}H - CH_3 \; \text{(More stable)}\)
(2) Hydroboration Oxidation Reaction:
\(3CH_3 - CH = CH_2 + B_2H_6 \xrightarrow{\text{THF}} 2(CH_3CH_2CH_2)_3B\)
\((CH_3CH_2CH_2)_3B + 3H_2O_2 \xrightarrow{\text{OH}^-} 3CH_3CH_2CH_2OH + H_3BO_3\) (B)
Thus the correct answer is Option 3.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: