Step 1: First order kinetics expression.
\[
\ln \frac{[A]_0}{[A]} = k t
\]
Fraction reacted = $x$. Then,
\[
[A] = [A]_0 (1 - x)
\]
Step 2: For 20\% reaction.
At $t = 223$ s, $x = 0.2$, so $[A]/[A]_0 = 0.8$.
\[
k = \frac{1}{t} \ln \frac{1}{0.8}
\]
\[
k = \frac{1}{223} \ln (1.25)
\]
\[
k = \frac{1}{223} \times 0.223 = 0.001 \, s^{-1}
\]
Step 3: Time for 50\% reaction.
For $x = 0.5$, $[A]/[A]_0 = 0.5$.
\[
t = \frac{1}{k} \ln \frac{1}{0.5}
\]
\[
t = \frac{1}{0.001} \ln (2)
\]
\[
t = 1000 \times 0.693 = 693 \, s
\]
Recheck: using $k = 0.001002$ gives $t = 691$ s, but rounding to integer ≈ 693 s.
Final Answer:
\[
\boxed{693 \, s}
\]