Step 1: Write the given equation.
\[
\log_{10} K_{eq} = -\frac{1900}{T} + 2.4
\]
At $T = 1900$ K:
\[
\log_{10} K_{eq} = -\frac{1900}{1900} + 2.4 = -1 + 2.4 = 1.4
\]
\[
K_{eq} = 10^{1.4} \approx 25.1
\]
Step 2: Definition of equilibrium constant.
For half H$_2$(g) equal to [H],
\[
K_{eq} = \frac{[H]}{(p_{H2})^{1/2}}
\]
Rearrange for $p_{H2}$:
\[
p_{H2} = \left(\frac{[H]}{K_{eq}}\right)^2
\]
Step 3: Substitute values.
For 1 ppm of dissolved H, $[H] = 1$:
\[
p_{H2} = \left(\frac{1}{25.1}\right)^2 = 0.00159 \, \text{atm}
\]
Convert to Torr:
\[
p_{H2} = 0.00159 \times 760 = 1.21 \, \text{Torr}
\]
Rounded to two decimals:
\[
\boxed{\text{Equilibrium pressure = 1.21 Torr}}
\]